Lista

Meccanica:

Moti

Moto Rettilineo Uniforme

$$s = vt\\ \Delta v = 0\\ v = \frac{ s }{ t }\\ t = \frac{ s }{ v }$$

Moto Uniformemente Accelerato

$$s = s_0 + v_0t + \frac{1}{2}at^2\\ v = v_0 + at\\ \Delta a = 0\\ a = \frac{v^2 - v_0^2}{2\Delta s}$$

Moto Parabolico

$$\mathrm{s:}\begin{eqnarray} \left\{ \begin{array}{l} x = x_0 + v_{0x}t \\ y = y_0 (h) + v_{0y}t - \frac{1}{2}gt^2 \end{array} \right. \end{eqnarray}\\ v_x = v_{0x} \Rightarrow \Delta v_x = 0\\ v_y = v_{0y} - gt\\ v_{0y} \neq 0 \Rightarrow R = 2\frac{v_{0x}v_{0y}}{g}\\ v_{0y} = 0 \Rightarrow R = v_{0x}t_f\\ h = y_0 + \frac{v_0^2\sin(2\alpha)}{g}\\ \mathrm{Traiettoria:} y = \frac{v_{0y}}{v_{0x}}x - \frac{g}{2v_{0x}^2}x^2$$

Moto Circolare Uniforme

$$s = \alpha r\\ \omega = \frac{\alpha}{\Delta t} = \frac{2\pi}{T} = 2\pi f\\ f = T^{-1}\\ v = \omega^2 r\\ a_c = \frac{v^2}{r} = \omega^2 r$$

Moto Armonico Semplice

$$s = A\cos (\omega t)\\ v = -A\omega \sin (\omega t)\\ a = -A\omega^2 \cos (\omega t)$$

Moto del pendolo

$$T = 2\pi\sqrt{\frac{l}{g}}$$

Moto elastico

$$T = 2\pi\sqrt{\frac{m}{k}}$$

Dinamica

Forze

$$F_{el} = kx\\ F_a = \mu P\\ P = mg$$

Leggi della dinamica

$$\mathrm{2°:} F = ma\\ \mathrm{3°:} F_{1,2} = -F_{2,1}$$

Relatività Galileiana

\begin{eqnarray} \left\{ \begin{array}{l} x' = x - vt \\ y' = y \end{array} \right. \end{eqnarray}

Energia

Forme

$$K = \frac{1}{2} mv^2\\ U_g = mgh\\ L = F\cdot s\\ U_{el} = \frac{1}{2} kx^2$$

Teoremi

$$\mathrm{Forze vive}\\ \Delta K = \Delta L\\ \mathrm{Conservazione}\\ E = K + U \land \Delta E = 0\\ \Delta K = \Delta U$$

Urti Elastici

\begin{eqnarray} \left\{ \begin{array}{l} \frac{1}{2}m_i1v_i1^2 + \frac{1}{2}m_i2v_i2^2 = \frac{1}{2}m_f1v_f1^2 + \frac{1}{2}m_f2v_f2^2\\ m_i1v_i1 + m_i2v_i2 = m_f1v_f1 + m_f2v_f2\\ \end{array} \right. \end{eqnarray}

Dinamica rotazionale

$$\mathrm{Conversioni}\\ (n)giri/min=\frac{n}{60}giri/s=\frac{2n\pi}{60}rad/s\\ \mathrm{Grandezze}\\ \omega = \frac{2\pi}{T} = \frac{\Delta \theta}{\Delta t}\\ v_t = \omega r\\ \alpha = \frac{\Delta \omega}{\Delta t}\\ a_t = \alpha r\\ a_c = r\omega^2 = \frac{v^2}{r}\\ \mathrm{M. accellerato}\\ \omega = \omega_0 + \alpha t\\ \theta = \theta_0 + \omega_0 t + \frac{1}{2}\alpha t^2\\ \mathrm{Momenti}\\ I = \sum mr^2\\ L = I\omega = mv\land r\\ M = F\land b = I\alpha = \frac{\Delta L}{\Delta t}\\ \mathrm{Energia}\\ K_{rotolamento} = \frac{1}{2}mv^2 + \frac{1}{2}I\omega^2 $$

Gravitazione

$$\mathrm{Grandezze}\\ F=G\frac{m_1 m_2}{r^2}\\ g=G\frac{M_p}{R_{p}^2}\\ v_{fuga}=\sqrt{\frac{2GM_p}{R_p}}\\ \mathrm{Energia}\\ U=-mgh=-G\frac{Mm}{r}\\ \mathrm{Keplero}\\ T=(\frac{2\pi}{\sqrt{GM_G}})r^{\frac{3}{2}}\\ \mathrm{Campo}\\ h=\frac{F}{m}=G\frac{M}{r^2}\\ $$

Idrodinamica

Legge di continuità
$$\rho_1A_1v_1=\rho_2A_2v_2\\ \Delta V = A_1v_1\Delta t\\ \Delta m = \rho_1A_1v_1\Delta t\\ \Delta m_1 = \Delta m_2\\ Q=\frac{\Delta V}{\Delta t}$$ Bernoulli
$$p_1+\frac{1}{2}\rho v_1^2 + \rho gy_1 = p_2+\frac{1}{2}\rho v_2^2 + \rho gy_2\\ 1) p=\frac{F}{A} \Rightarrow \frac{F\Delta x}{A\Delta x} = \frac{W}{V}\\ 2) K=\frac{1}{2}mv^2 \Rightarrow \frac{K}{V}=\frac{1}{2}\frac{m}{V}v^2=\frac{1}{2}\rho v^2\\ 3) U=mgh \Rightarrow \frac{U}{V} = \frac{mgh}{V} = \rho gh$$

Onde sonore

$$v=\frac{\lambda}{T}=\lambda f=\sqrt{gh}=\sqrt{\frac{F}{\mu}}\\ \mu=\frac{m}{L}\\ y(x,t)=A cos(\frac{2\pi}{\lambda}x+-\frac{2\pi}{T}t)\\ I=\frac{E}{At}=\frac{P}{A}\\ I_p = \frac{P}{4\pi r^2}\\ \beta = (10dB)log(\frac{I}{I_0})\\ f'=\frac{v'}{\lambda}=(1+-\frac{u}{v})f\\ f'=\frac{v}{\lambda'}=\frac{f}{(1-+\frac{u}{v})}\\ f'=\frac{(1+-\frac{u}{v})}{(1-+\frac{u}{v})}f\\ \lambda_fondamentale = 2L\\ f_fondamentale = \frac{v}{2L}\\ f_n=nf\\ \lambda_n =\frac{\lambda}{n}=\frac{2L}{n}\\ f_bat = |f_1-f_2|$$

Next